

State University of New York at Stony Brook

Contents

- Motivation
- Search Channels

$$\begin{array}{l} WV \rightarrow l\nu jj/l\nu J \\ WZ \rightarrow l\nu ll \\ VV \rightarrow JJ \\ Combination \\ H^{\pm} \rightarrow W^{\pm}Z \\ VH \rightarrow \nu\nu/l\nu/ll + b\bar{b} \end{array}$$

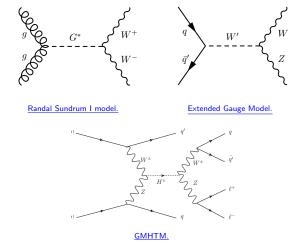
- Summary
- 4 Backup

ATLAS/CMS comparison

$$VG \rightarrow I\nu/II + \gamma$$

 $ZV \rightarrow IIjj/IIJ$

 $HH \rightarrow b\bar{b}b\bar{b}$


Physical Models Relevant to this Talk

- Randal-Sundrum Based Model(RS I): Predicting an extra compactified dimension, we search the lowest graviton mode, G*.
- Extended Gauge Model(EGM): Predicting heavier versions of the W and Z bosons, the W' and Z'.
- Minimal Walking Technicolor(MWT): Particular version of Technicolor, predicts the existence of $R_{1,2}^{\pm}$ and $R_{1,2}^{0}$.
- Low Scale Technicolor(LSCT): Particular version of Technicolor, predicts the existence of a_T , ω_T and ϕ_T .
- Heavy Vector Triplet (HVT): Based on a phenomenological Lagrangian, the resonances searched are V^{\pm} and V^{0} .
- Georgi-Machacek Higgs Triplet Model (GMHTM): Predicts the existence of charged higgs bosons H[±].

Physical Models Relevant to this Talk

Motivation

ATLAS data coming from $\sqrt{s}=8$ TeV pp collisions is used to search for narrow diboson resonances and other predicted particles.

4/32

Hadronic Boson Reconstruction

Different clustering algorithms can be used for reconstructing the jets originating from a vector boson decay, depending on the boson p_T .

Hadronically Decaying Bosons

If the p_T of the bosons is low enough the two quarks in which they decay will hadronize in two well separated jets, this is the **resolved regime**.

LRR: If for both bosons $p_T > 100$ GeV.

HRR: If for both bosons $p_T > 250(300)$ GeV for ZV(WV) analysis.

If the p_T of the bosons is large enough the quarks from its decay will form a **single fat** jet, this is the merged regime.

MR: Merged regime, if for both bosons $p_T > 400 \text{GeV}$. Enables the use of a split filtering algorithm optimized for high p_T jets, this algorithm is described in slide 30.

In order to reconstruct Higgs bosons b-jets are identified with a neural network based algorithm that achieves 70% efficiency.

Backup

Leptonic Boson Reconstruction

The analyses reviewed here follow roughly the requirements listed below when dealing with leptons.

Leptonically Decaying Bosons

- The leptons are required to pass isolation requirements in the Inner Detector and in the Calorimeter.
- The leptons are required to be isolated ⇒ for boosted Z bosons decaying into two leptons I₁ and I₂, ΔR(I₁, I₂) is very small and many events fail isolation ⇒ energy of I₂ has to be ignored when applying isolation requirements to I₁ and viceversa, this is an **optimized isolation** algorithm for boosted bosons.
- The lowest p_T of the electrons and muons should be above $\approx 25 \text{GeV}$.
- Electrons most of the time are required to be in $|\eta| < 2.7$ excluding $1.05 < |\eta| < 2.4$, the *precision region* of the Electromagnetic Calorimeter.
- Neutrinos p_T 's are taken as the p_T^{miss} in the event and their p_z are obtained by requiring $M_W = M_{l\nu}$.

Search Channels

WV ightarrow I u jj / I u J, http://arxiv.org/pdf/1503.04677v1.pdf

- Analysis triggers on events with one electron or one muon.
- It uses merged and resolved regimes to reconstruct hadronic bosons which should lie in $65 < m_{jj/J} < 105 \text{GeV}$.
- $E_T^{miss} > 30 \text{GeV}$.

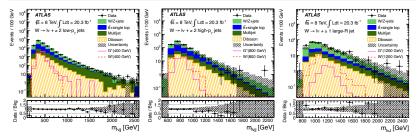
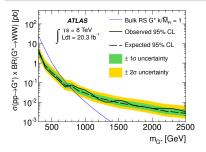



Figure: The figures show a comparison between the background estimate and the data. At the left for the LRR at the center for the HRR and at the right for the MR region.

$WV \rightarrow l\nu jj/l\nu J$, http://arxiv.org/pdf/1503.04677v1.pdf

Background Estimation and Limits

- The main background comes from W/Z+jets events
- This background is estimated with simulated samples corrected with data using control regions.
- For the control regions, the mass of the boson is restricted to the sidebands $40 < m_{jj} < 65 \text{GeV}$ and $105 < m_{jj} < 200 \text{GeV}$ of the LRR.

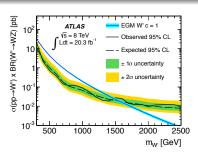
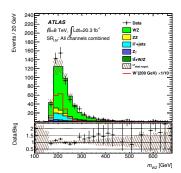
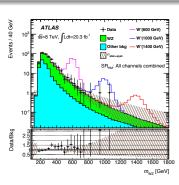




Figure: Upper limits on the $\sigma \cdot BR$ for a RS I graviton and an EGM W', combining merged and resolved regimes.

Backup

- Exactly three leptons are required with a p_T > 25GeV.
- Two signal regions are defined, one for high mass signals (S_{HM}) with $\Delta\phi(I,E_T^{miss})<1.5$ and another for low mass signals S_{LM} with $\Delta\phi(I,E_T^{miss})>1.5$

Low Signal Region

High Signal Region

$WZ \rightarrow I\nu II$, http://arxiv.org/pdf/1406.4456v1.pdf

Background Estimation and Limits

- The background is dominated by WZ/ZZ and $t\bar{t} + W/Z$ events.
- The simulation modeling of these backgrounds is validated on a control region consisting of the $\Delta y(W,Z)$ cut reversed and the $\Delta \phi(I,E_T^{miss})$ dropped.

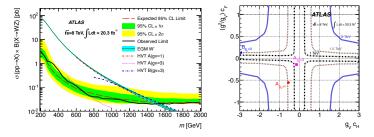
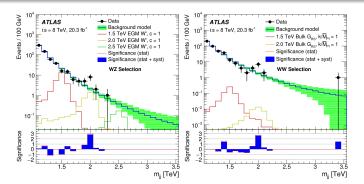



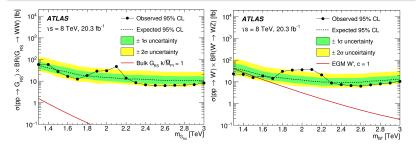
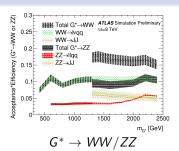
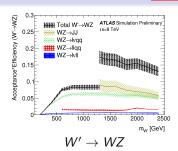
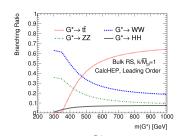
Figure: At the left the upper observed limits on the $\sigma \cdot BR$ for an EGM W', combining low and high signal regions. At the right the exclusion contours in the HVT parameter space.

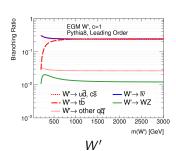
 $VV \rightarrow JJ$, http://arxiv.org/pdf/1506.00962v2.pdf

- Analysis triggers on events with a large-R jet with $p_T > 360 \text{GeV}$.
- The analysis uses only the merged regime (due to the high p_T of the bosons) and substructure quantities are used to tag the bosons.
- The bosons are required to be within 13GeV from the mass of the W or Z, other cuts are applied on the jet's number of tracks, $\Delta y(J_1, J_2)...$

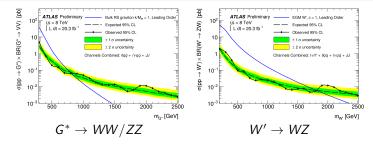
Background Estimation and Limits

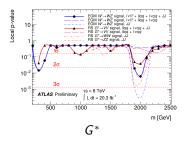
- The background is dominated by SM QCD dijet events with small contribution from W/Z + jets.
- The background is estimated by fitting the data, the systematics on the background come from the error in the fitting parameters.

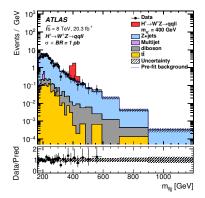






Figure: At the left it is shown the upper and expected limits on the branching ratio times the cross section for $G \to WW$. At the right it is shown the same but for the process $W' \to WZ$.

VV combination (Acceptance×Efficiency and Branching ratios), Preliminary






VV combination (Limits and pvalues), Preliminary

$$H^\pm o W^\pm Z$$
, http://arxiv.org/pdf/1503.04233v1.pdf

- The W boson, reconstructed from the highest p_T central ($|\eta| < 2.5$) jets, has to be in $60 < m_{jj} < 95 \text{GeV}$.
- The Z boson, reconstructed from two leptons required to be oppositely charged, has to be in $83 < m_{\parallel} < 99 \text{GeV}$.

$$H^\pm o W^\pm Z$$
, http://arxiv.org/pdf/1503.04233v1.pdf

Background Estimation and Limits

- The shapes of all the backgrounds are estimated from simulation, except the multijet background that is taken from data.
- The Z + jets background normalization is left as a free parameter in the fit to the data.
- The largest systematic uncertainties come from the Z + jets normalization and modeling.

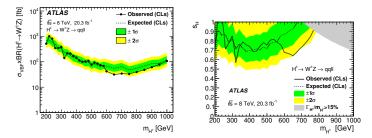
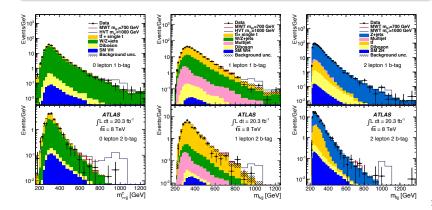
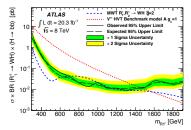



Figure: At the right the upper limits on $\sigma \cdot BR$ for a H^{\pm} , at the right the same upper limits for the model parameter S_H .

$VH ightarrow u u / I u / II + b ar{b}$, http://arxiv.org/pdf/1503.08089v1.pdf


- The data is split into samples with 1 b-tagged jet and 2 b-tagged jets. AntiKt 0.4 jets are used.
- The Data is also split in three categories, events with zero, one and two leptons.
- A cut on the p_T of the boson as a function of the reconstructed mass was used.

$$VH
ightarrow
u
u / I
u / II + b ar{b}$$
, http://arxiv.org/pdf/1503.08089v1.pdf

Background Estimation and Limits

- All backgrounds except the multijet background are taken from simulation corrected with data in control regions.
- The W/Z+jets and $t\bar{t}$ modeling are the dominant sources of systematics; they are obtained comparing different generators and by looking at any residual discrepancy in the control regions.

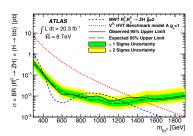
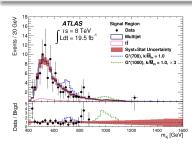
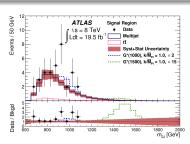


Figure: Limits on $R_1^{(\pm,0)}$ (Minimal Walking Technicolor) and $V^{(0,\pm)}$ (Heavy Vector Triplet).

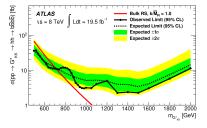

$HH o bar{b}bar{b}$, http://arxiv.org/pdf/1506.00285v1.pdf


Event Selection

Merged Regime: Select events with two large-R jets, build from their tracks AntiKt jets with R=1.0 and trim them, using $\Delta R=0.3$ subjets to get rid of QCD, find b-jets among the subjets.

Resolved Regime: Select events with at least 4 b-tagged jets and form dijets with highest p_T jets, then apply mass dependent cuts.

The same b-tagging algorithm is used in both regimes.


Resolved Regime

Boosted Regime

$HH \rightarrow b\bar{b}b\bar{b}$, http://arxiv.org/pdf/1506.00285v1.pdf

Background Estimation and Limits

- The background is dominated by multijet (95%) and $t\bar{t}$ (5%) events.
- The multijet background is modeled using data and the $t\bar{t}$ background uses simulation for the shape, the normalization is deduced using data.
- Boosted and resolved regimes are combined to achieve the highest sensitivity.

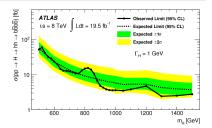


Figure: Upper Limits on $\sigma \cdot BR$ after combining the merged and resolved regime for the a Graviton (left) and a Heavy Higgs (right).

• Several searches have been reviewed in the diboson channel, they use the full 2012 ATLAS dataset of pp collisions at $\sqrt{s}=8 \text{TeV}$.

Summary

- The channels studied contain two bosons. These can be W's, Z's or H's, which can decay into leptons or quarks.
- Boson tagging techniques are used for the resolved and merged regime when the boson decays into quarks.
- Optimized isolation criteria are used for boosted Z bosons decaying leptonically.
- Limits are set and many models are ruled out at 95% CL.
- No new physics has been found so far but an excess at 2TeV was found in the $VV \to JJ$ analysis with a global significance of 2.5σ .

Summary

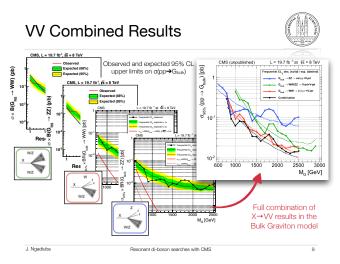
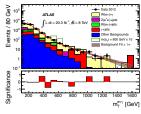
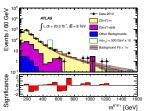
All the searches listed here use the full 2012 ATLAS dataset. / stands for electrons or muons.

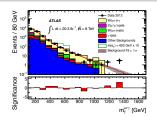
Summary

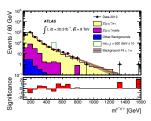
Channel/Model	Signals	Jets	Background	Paper
WV ightarrow I u jj/J	W', G*	AntiKt-0.4	MC+Data	link
		C/A-1.2		
ZV o IIjj/J	W', G*	AntiKt-0.4	MC+Data	<u>link</u>
		C/A-1.2		
VV o JJ	W', G*	C/A 1.2	Data	<u>link</u>
$WZ \rightarrow I \nu II$	W' , V^0 , V^{\pm}	_	MC+Data	link
$VH \rightarrow II/I\nu$	$R_{1,2}^0, R_{1,2}^{\pm}$	AntiKt-0.4	MC+Data	link
$/ u u + bar{b}$	V^{0}, V^{\pm}			
HH o bar b bar b	G*,H	AntiKt-0.4	MC+Data	link
		AntiKt-1.0		
$V\gamma$	a_T, ω_T, ϕ_T	AntiKt-0.4	Data	<u>link</u>
$W^{\pm}Z o jjll$	H^{\pm}	AntiKt-0.4	MC+Data	<u>link</u>

BACKUP

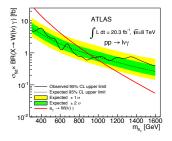
Results, Comparison with CMS

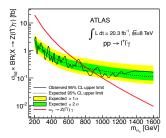





Figure: Presented by Jennifer Ngadiuba (University of Zurich) at PHENO 2015.


$V\gamma ightarrow I u/II + \gamma$, http://arxiv.org/pdf/1407.8150v2.pdf

- The Z boson is reconstructed from leptons in $65 < m_{||} < 115 \text{GeV}$.
- The transverse mass of the reconstructed W has to satisfy $M_W > 40 \text{GeV}$.

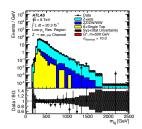


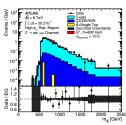


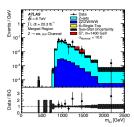
$$V\gamma \rightarrow I\nu/II + \gamma$$
, http://arxiv.org/pdf/1407.8150v2.pdf

Background Estimation and Limits

The background is made mostly of SM $W/Z+\gamma$, W/Z+jets, $\gamma+jets$, $t\bar{t}$, and it is calculated by fitting a sum of two exponentials to the data.

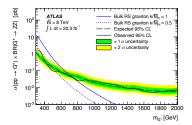


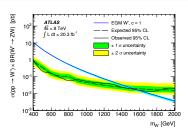

Observed upper limits on $\sigma \cdot BR$ for a_T and ω_T in function of their masses.


Summary

ZV o IIII/IIJ, http://arxiv.org/pdf/1409.6190v2.pdf

- The analysis triggers on events with one electron or one muon.
- It uses merged and resolved regimes to reconstruct hadronic bosons which should lie in $70 < m_{ii/J} < 110$ GeV.
- Makes use of an **optimized isolation** cut for boosted Z's to reconstruct Z bosons which should lie in $66 < m_{\parallel} < 116 \text{GeV}$.





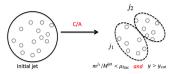
$ZV \rightarrow IIjj/IIJ$, http://arxiv.org/pdf/1409.6190v2.pdf

Background Estimation and Limits

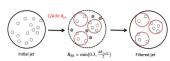
- The main background is Z+jets events.
- This background is estimated with simulated samples corrected using data in the control region.
- The control regions is taken as either $m_{jj/J} < 70 \text{GeV}$ or $m_{jj/J} > 110 \text{GeV}$.

Upper limits on the $\sigma \cdot BR$ for a bulk RS graviton and an EGM W', combining merged and resolved regimes.

Filtering C/A jets

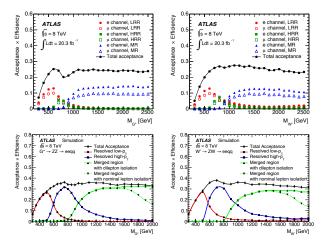

A split-filtering algorithm is used in WV, ZV and VV channels to clean C/A 1.2 jets from QCD contamination.

Filtered Jets

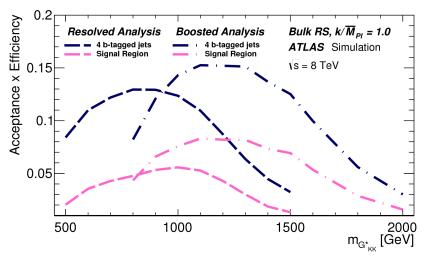

C/A 1.2 jets are made of calorimeter clus-To get rid of QCD contamination, decluster C/A jets and keep pair if $y_f > y_{fmin}$, otherwise keep only hardest jet (groom). Repeat until a pair is found or until nothing is left, then recluster what is left with C/A R_{filt} and keep the 3 leading subjets.

$$y_f = \frac{min(p_{T1}^2, p_{T2}^2)}{m_0^2} \Delta R_{12}^2 \approx \frac{min(p_{T1}, p_{T2})}{max(p_{T1}, p_{T2})}$$
(1)

$$\mu_f = \frac{\max(m_1, m_2)}{m_0} \tag{2}$$


Splitting and Grooming

Reclustering and Filtering


The algorithm attempts to catch each boson in a single C/A 1.2 jet and remove the QCD contamination.

Merged and Resolved Regime Efficiencies

Acceptance times efficiency for many signal hypothesis in the WV channel (upper) and the ZV channel (below) for merged and resolved regimes.

Merged and Resolved Regime Efficiencies

Acceptance times efficiency for different signal hypotheses for the $HH o bar{b}bar{b}$.